Super-resolution Using Constrained Deep Texture Synthesis

نویسندگان

  • Libin Sun
  • James Hays
چکیده

Hallucinating high frequency image details in single image superresolution is a challenging task. Traditional super-resolution methods tend to produce oversmoothed output images due to the ambiguity in mapping between low and high resolution patches. We build on recent success in deep learning based texture synthesis and show that this rich feature space can facilitate successful transfer and synthesis of high frequency image details to improve the visual quality of super-resolution results on a wide variety of natural textures and images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Image Inpainting for High-Resolution Textures using CNN Texture Synthesis

Deep neural networks have been successfully applied to problems such as image segmentation, image super-resolution, coloration and image inpainting. In this work we propose the use of convolutional neural networks (CNN) for image inpainting of large regions in high-resolution textures. Due to limited computational resources processing high-resolution images with neural networks is still an open...

متن کامل

Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling

The “interpretation through synthesis” approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness o...

متن کامل

Graphcut Texture Synthesis for Single-Image Superresolution

Texture synthesis has proven successful at imitating a wide variety of textures. Adding additional constraints (in the form of a low-resolution version of the texture to be synthesized) makes it possible to use texture synthesis methods for texture superresolution. The Single-image Superresolution Problem The problem we are trying to solve is the following: Given: a low-resolution image and hig...

متن کامل

Markov Random Fields for Super-resolution and Texture Synthesis

Suppose we want to digitally enlarge a photograph. The input is a single, low-resolution image, and the desired output is an estimate of the high-resolution version of that image. This problem can be phrased as one of “image interpolation”: we seek to interpolate the pixel values between our observed samples. Image interpolation is sometimes called super-resolution, since we are estimating data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.07604  شماره 

صفحات  -

تاریخ انتشار 2017